Around the Moon Interactive

by Jules Verne


This revelation came like a thunderbolt. Who could have expected such an error in calculation? Barbicane would not believe it. Nicholl revised his figures: they were exact. As to the formula which had determined them, they could not suspect its truth; it was evident that an initiatory velocity of seventeen thousand yards in the first second was necessary to enable them to reach the neutral point.

The three friends looked at each other silently. There was no thought of breakfast. Barbicane, with clenched teeth, knitted brows, and hands clasped convulsively, was watching through the window. Nicholl had crossed his arms, and was examining his calculations. Michel Ardan was muttering:

“That is just like these scientific men: they never do anything else. I would give twenty pistoles if we could fall upon the Cambridge Observatory and crush it, together with the whole lot of dabblers in figures which it contains.”

Suddenly a thought struck the captain, which he at once communicated to Barbicane.

“Ah!” said he; “it is seven o’clock in the morning; we have already been gone thirty-two hours; more than half our passage is over, and we are not falling that I am aware of.”

Barbicane did not answer, but after a rapid glance at the captain, took a pair of compasses wherewith to measure the angular distance of the terrestrial globe; then from the lower window he took an exact observation, and noticed that the projectile was apparently stationary. Then rising and wiping his forehead, on which large drops of perspiration were standing, he put some figures on paper. Nicholl understood that the president was deducting from the terrestrial diameter the projectile’s distance from the earth. He watched him anxiously.

“No,” exclaimed Barbicane, after some moments, “no, we are not falling! no, we are already more than 50,000 leagues from the earth. We have passed the point at which the projectile would have stopped if its speed had only been 12,000 yards at starting. We are still going up.”

“That is evident,” replied Nicholl; “and we must conclude that our initial speed, under the power of the 400,000 pounds of gun-cotton, must have exceeded the required 12,000 yards. Now I can understand how, after thirteen minutes only, we met the second satellite, which gravitates round the earth at more than 2,000 leagues’ distance.”

“And this explanation is the more probable,” added Barbicane, “Because, in throwing off the water enclosed between its partition-breaks, the projectile found itself lightened of a considerable weight.”

“Just so,” said Nicholl.

“Ah, my brave Nicholl, we are saved!”

“Very well then,” said Michel Ardan quietly; “as we are safe, let us have breakfast.”

Nicholl was not mistaken. The initial speed had been, very fortunately, much above that estimated by the Cambridge Observatory; but the Cambridge Observatory had nevertheless made a mistake.

The travelers, recovered from this false alarm, breakfasted merrily. If they ate a good deal, they talked more. Their confidence was greater after than before “the incident of the algebra.”

“Why should we not succeed?” said Michel Ardan; “why should we not arrive safely? We are launched; we have no obstacle before us, no stones in the way; the road is open, more so than that of a ship battling with the sea; more open than that of a balloon battling with the wind; and if a ship can reach its destination, a balloon go where it pleases, why cannot our projectile attain its end and aim?”

“It will attain it,” said Barbicane.

“If only to do honor to the Americans,” added Michel Ardan, “the only people who could bring such an enterprise to a happy termination, and the only one which could produce a President Barbicane. Ah, now we are no longer uneasy, I begin to think, What will become of us? We shall get right royally weary.”

Barbicane and Nicholl made a gesture of denial.

“But I have provided for the contingency, my friends,” replied Michel; “you have only to speak, and I have chess, draughts, cards, and dominoes at your disposal; nothing is wanting but a billiard-table.”

“What!” exclaimed Barbicane; “you brought away such trifles?”

“Certainly,” replied Michel, “and not only to distract ourselves, but also with the laudable intention of endowing the Selenite smoking divans with them.”

“My friend,” said Barbicane, “if the moon is inhabited, its inhabitants must have appeared some thousands of years before those of the earth, for we cannot doubt that their star is much older than ours. If then these Selenites have existed their hundreds of thousands of years, and if their brain is of the same organization of the human brain, they have already invented all that we have invented, and even what we may invent in future ages. They have nothing to learn from us, and we have everything to learn from them.”

“What!” said Michel; “you believe that they have artists like Phidias, Michael Angelo, or Raphael?”


“Poets like Homer, Virgil, Milton, Lamartine, and Hugo?”

“I am sure of it.”

“Philosophers like Plato, Aristotle, Descartes, Kant?”

“I have no doubt of it.”

“Scientific men like Archimedes, Euclid, Pascal, Newton?”

“I could swear it.”

“Comic writers like Arnal, and photographers like— like Nadar?”


“Then, friend Barbicane, if they are as strong as we are, and even stronger— these Selenites— why have they not tried to communicate with the earth? why have they not launched a lunar projectile to our terrestrial regions?”

“Who told you that they have never done so?” said Barbicane seriously.

“Indeed,” added Nicholl, “it would be easier for them than for us, for two reasons; first, because the attraction on the moon’s surface is six times less than on that of the earth, which would allow a projectile to rise more easily; secondly, because it would be enough to send such a projectile only at 8,000 leagues instead of 80,000, which would require the force of projection to be ten times less strong.”

“Then,” continued Michel, “I repeat it, why have they not done it?”

“And I repeat,” said Barbicane; “who told you that they have not done it?”


“Thousands of years before man appeared on earth.”

“And the projectile— where is the projectile? I demand to see the projectile.”

“My friend,” replied Barbicane, “the sea covers five-sixths of our globe. From that we may draw five good reasons for supposing that the lunar projectile, if ever launched, is now at the bottom of the Atlantic or the Pacific, unless it sped into some crevasse at that period when the crust of the earth was not yet hardened.”

“Old Barbicane,” said Michel, “you have an answer for everything, and I bow before your wisdom. But there is one hypothesis that would suit me better than all the others, which is, the Selenites, being older than we, are wiser, and have not invented gunpowder.”

At this moment Diana joined in the conversation by a sonorous barking. She was asking for her breakfast.

“Ah!” said Michel Ardan, “in our discussion we have forgotten Diana and Satellite.”

Immediately a good-sized pie was given to the dog, which devoured it hungrily.

“Do you see, Barbicane,” said Michel, “we should have made a second Noah’s ark of this projectile, and borne with us to the moon a couple of every kind of domestic animal.”

“I dare say; but room would have failed us.”

“Oh!” said Michel, “we might have squeezed a little.”

“The fact is,” replied Nicholl, “that cows, bulls, and horses, and all ruminants, would have been very useful on the lunar continent, but unfortunately the car could neither have been made a stable nor a shed.”

“Well, we might have at least brought a donkey, only a little donkey; that courageous beast which old Silenus loved to mount. I love those old donkeys; they are the least favored animals in creation; they are not only beaten while alive, but even after they are dead.”

“How do you make that out?” asked Barbicane. “Why,” said Michel, “they make their skins into drums.”

Barbicane and Nicholl could not help laughing at this ridiculous remark. But a cry from their merry companion stopped them. The latter was leaning over the spot where Satellite lay. He rose, saying:

“My good Satellite is no longer ill.”

“Ah!” said Nicholl.

“No,” answered Michel, “he is dead! There,” added he, in a piteous tone, “that is embarrassing. I much fear, my poor Diana, that you will leave no progeny in the lunar regions!”

Indeed the unfortunate Satellite had not survived its wound. It was quite dead. Michel Ardan looked at his friends with a rueful countenance.

“One question presents itself,” said Barbicane. “We cannot keep the dead body of this dog with us for the next forty-eight hours.”

“No! certainly not,” replied Nicholl; “but our scuttles are fixed on hinges; they can be let down. We will open one, and throw the body out into space.”

The president thought for some moments, and then said:

“Yes, we must do so, but at the same time taking very great precautions.”

“Why?” asked Michel.

“For two reasons which you will understand,” answered Barbicane. “The first relates to the air shut up in the projectile, and of which we must lose as little as possible.”

“But we manufacture the air?”

“Only in part. We make only the oxygen, my worthy Michel; and with regard to that, we must watch that the apparatus does not furnish the oxygen in too great a quantity; for an excess would bring us very serious physiological troubles. But if we make the oxygen, we do not make the azote, that medium which the lungs do not absorb, and which ought to remain intact; and that azote will escape rapidly through the open scuttles.”

“Oh! the time for throwing out poor Satellite?” said Michel.

“Agreed; but we must act quickly.”

“And the second reason?” asked Michel.

“The second reason is that we must not let the outer cold, which is excessive, penetrate the projectile or we shall be frozen to death.”

“But the sun?”

“The sun warms our projectile, which absorbs its rays; but it does not warm the vacuum in which we are floating at this moment. Where there is no air, there is no more heat than diffused light; and the same with darkness; it is cold where the sun’s rays do not strike direct. This temperature is only the temperature produced by the radiation of the stars; that is to say, what the terrestrial globe would undergo if the sun disappeared one day.”

“Which is not to be feared,” replied Nicholl.

“Who knows?” said Michel Ardan. “But, in admitting that the sun does not go out, might it not happen that the earth might move away from it?”

“There!” said Barbicane, “there is Michel with his ideas.”

“And,” continued Michel, “do we not know that in 1861 the earth passed through the tail of a comet? Or let us suppose a comet whose power of attraction is greater than that of the sun. The terrestrial orbit will bend toward the wandering star, and the earth, becoming its satellite, will be drawn such a distance that the rays of the sun will have no action on its surface.”

“That might happen, indeed,” replied Barbicane, “but the consequences of such a displacement need not be so formidable as you suppose.”

“And why not?”

“Because the heat and cold would be equalized on our globe. It has been calculated that, had our earth been carried along in its course by the comet of 1861, at its perihelion, that is, its nearest approach to the sun, it would have undergone a heat 28,000 times greater than that of summer. But this heat, which is sufficient to evaporate the waters, would have formed a thick ring of cloud, which would have modified that excessive temperature; hence the compensation between the cold of the aphelion and the heat of the perihelion.”

“At how many degrees,” asked Nicholl, “is the temperature of the planetary spaces estimated?”

“Formerly,” replied Barbicane, “it was greatly exagerated; but now, after the calculations of Fourier, of the French Academy of Science, it is not supposed to exceed 60 Centigrade below zero.”

“Pooh!” said Michel, “that’s nothing!”

“It is very much,” replied Barbicane; “the temperature which was observed in the polar regions, at Melville Island and Fort Reliance, that is 76 Fahrenheit below zero.”

“If I mistake not,” said Nicholl, “M. Pouillet, another savant, estimates the temperature of space at 250 Fahrenheit below zero. We shall, however, be able to verify these calculations for ourselves.”

“Not at present; because the solar rays, beating directly upon our thermometer, would give, on the contrary, a very high temperature. But, when we arrive in the moon, during its fifteen days of night at either face, we shall have leisure to make the experiment, for our satellite lies in a vacuum.”

“What do you mean by a vacuum?” asked Michel. “Is it perfectly such?”

“It is absolutely void of air.”

“And is the air replaced by nothing whatever?”

“By the ether only,” replied Barbicane.

“And pray what is the ether?”

“The ether, my friend, is an agglomeration of imponderable atoms, which, relatively to their dimensions, are as far removed from each other as the celestial bodies are in space. It is these atoms which, by their vibratory motion, produce both light and heat in the universe.”


Click here to see an enlarged version of this picture. (Illustrated Edition: 1886 by permisssion of Jerry Woodfill)

They now proceeded to the burial of Satellite. They had merely to drop him into space, in the same way that sailors drop a body into the sea; but, as President Barbicane suggested, they must act quickly, so as to lose as little as possible of that air whose elasticity would rapidly have spread it into space. The bolts of the right scuttle, the opening of which measured about twelve inches across, were carefully drawn, while Michel, quite grieved, prepared to launch his dog into space. The glass, raised by a powerful lever, which enabled it to overcome the pressure of the inside air on the walls of the projectile, turned rapidly on its hinges, and Satellite was thrown out. Scarcely a particle of air could have escaped, and the operation was so successful that later on Barbicane did not fear to dispose of the rubbish which encumbered the car.



Notices: What You Need to Know About NASA JSC Web Policies

Last modified: Wednesday, 06-Dec-2006 02:00:00 PM CST

Author: Jerry Woodfill / NASA, Mail Code ER7, jared.woodfill-1@nasa.gov

Curator: Cecilia Breigh, NASA JSC ER

Responsible Official: Andre Sylvester, NASA JSC ER7

Automation, Robotics and Simulation Division, Walter W. Guy, Chief.

ARSD logo.